Panjanggaris singgung persekutuan dalam dua lingkaran adalah 24 cm dan Soal Uji Coba Tes Kemampuan Komunikasi Matematik 1. Diketahui lingkaran berpusat di titik O dengan jari-jari OB=10 cm. Garis AB adalah garis singgung lingkaran yang melalui titik A di luar lingkaran. Jika jarak OA= 26 cm maka. Bagaimana ide kalian untuk menentukan panjang AB?.
Hai sobat Zen! Apa kabar? Kalian pastinya sudah belajar tentang lingkaran dong? Di artikel kali ini, kita akan bahas tentang garis singgung lingkaran. Apa sih garis singgung itu? Fungsinya apa? Terus cara ngitungnya gimana? Nah, sebelum pusing-pusing masuk ke rumus, coba kamu lihat gambar dibawah ini dulu deh Bisa kamu lihat, garis a letaknya berada di luar lingkaran, namun menyentuh 1 titik di lingkaran tersebut. Garis b memotong lingkaran dan menyentuh 2 titik lingkaran, sedangkan garis c terletak di luar lingkaran dan tidak menyentuh atau memotong titik di lingkaran. Nah, yang dinamakan garis singgung lingkaran yaitu garis a. Definisi Dan Ciri-Ciri Garis Singgung Lingkaran Kayak yang udah dijelasin di atas beserta gambar, jadi simplenya, garis singgung lingkaran adalah garis yang memotong atau menyentuh lingkaran tepat di 1 titik lingkaran tersebut. Garis singgung mempunyai titik pertemuan dengan objek atau bangun yang disentuhnya, namanya titik singgung. Sifat dan ciri-ciri garis singgung lingkaran antara lain Garis singgung lingkaran memotong atau menyentuh lingkarang di satu titik. Jika melalui sebuah garis titik di luar lingkaran, maka dapat dibuat dua buah garis singgung. Letak garis singgung lingkaran sejajar tegak dengan jari jari di titik singgungnya. Garis singgung lingkaran dan jari-jari lingkaran yang sejajar membentuk sudut 90 derajat Panjang garis singgung yang ditarik dari satu titik di luar lingkaran ke titik singgung adalah sama. Sebenarnya, untuk menghitung panjang garis singgung lingkaran, hal yang sangat berkaitan erat dan kita harus pahami adalah rumus dan konsep pada teorema phytagoras. Jadi, jika kalian sudah paham dengan konsep dan menghitung teorema phytagoras, materi mengenai garis singgung lingkaran ini bakal gampang buat kalian pahami. Garis singgung lingkaran dikenal terbagi dalam 2 jenis, yaitu garis singgung lingkaran persekutuan dalam dan garis singgung lingkaran persekutuan luar. Menentukan Panjang Garis Singgung Persekutuan Dalam Dua Lingkaran Garis singgung lingkaran persekutuan dalam melibatkan dua lingkaran dan sebuah garis singgung lingkaran. Untuk lebih jelasnya dapat dilihat pada gambar di bawah. Dari gambar di atas, bisa kita simpulkan bahwa Titik pusat lingkaran besar adalah M dengan jari jari R. Titik pusat lingkaran kecil adalah N dengan jari-jari r. Garis singgung persekutuan dalam adalah AB = d Jarak titik pusat kedua lingkaran besar dan kecil adalah MN = p Jika garis AB digeser ke atas dari titik B ke N maka akan diperoleh garis ON. Garis ON sejajar AB, sehingga sudut MON sama besar dengan sudut MAB, yaitu siku-siku 90 derajat Lalu sekarang fokus ke persegi panjang ABNO, Garis AB sejajar dengan NO, AO sejajar dengan BN, yang berarti sudut MON sama dengan sudut MAB, yaitu siku-siku 90 derajat Jadi, segi empat ABNO merupakan persegi panjang dengan panjang AB = d, dan lebar BN = r. Sekarang lihat lagi segitiga MNO, yang merupakan segitiga siku-siku dengan sudut siku-siku di titik O. Maka dengan menggunakan rumus pythagoras, akan diperoleh ON2 = MN2 – MO2 ON = Lalu, karena panjang AO sama dengan panjang BN, maka MO = R + r. Oleh karena itu, bisa disimpulkan bahwa rumus panjang garis singgung persekutuan dalam dua lingkaran d adalah Contoh soal Dketahui panjang jari-jari dua buah lingkaran masing-masing adalah 5 cm dan 2 cm. Jarak kedua titik pusatnya adalah 25 cm. Hitunglah panjang garis singgung persekutuan dalam kedua lingkaran tersebut! Jawab Masukkan rums d yang sudah dijelaskan diatas tadi Maka panjang garis singgung dalam kedua lingkaran tersebut adalah 24 cm. Menentukan Panjang Garis Singgung Persekutuan Luar Dua Lingkaran Sama seperti garis singgung persekutuan dalam dua lingkaran, garis singgung persekutuan luar dua lingkaran juga melibatkan dua buah lingkaran dan sebuah garis singgung. Bedanya ada di posisi garis singgung lingkaran. Dua titik singgung lingkaran pada garis singgung persekutuan dalam dua lingkaran terletak bersebrangan, sedangkan dua titik singgung lingkaran pada garis singgung persekutuan luar dua lingkaran terletak di sisi yang sama. Untuk lebih jelasnya, coba lihat gambar dibawah ini Dari gambar di atas, dapat disimpulkan bahwa Titik pusat lingkaran besar adalah M dengan jari-jari R. TItik pusat lingkaran kecil adalah N denga jari jari r. Garis singgung persekutuan luar adalah AB = f Jarak titik pusat kedua lingkaran adalah MN = p. Jika garis AB kita geser sejajar ke bawah dari B ke N, maka akan diperoleh garis ON. Garis AB sejajar ON, sehingga sudut MON sama dengan sudut MAB yaitu 90o siku-siku. Sekarang coba lihat persegi panjang ABNO. Garis AB sejajar dengan ON, dan garis AO sejajar dengan garis BN. Karena panjang ON sama dengan AB dan MO = R – r, maka rumus panjang garis singgung persekutuan luar dua lingkaran f adalah Contoh soal Diketahui panjang jari-jari dua lingkaran masing-masing adalah 15 cm dan 5 cm. Panjang garis singgung persekutuan luar kedua lingkaran adalah 24 cm. Hitunglah jarak kedua titik pusat kedua lingkaran tersebut! Jawab Maka, jarak kedua titik pusatnya = 26 cm Nah, sekian cara menghitung atau menentukan panjang garis singgung lingkaran. Mudah, kan? Baca Juga Cara Mengubah Desimal Ke Pecahan Dan Persen Mengenal 4 Rumus Turunan Matematika Dan Fisika
Duabuah lingkaran memiliki panjang garis singgung persekutuan luar 24 cm dan jarak kedua titik pusat lingkaran 26 cm. Jika panjang jari-jari lingkaran besar 18 cm, maka panjang jari-jari lingkaran yang lain adalah . A. 6 cm B. 8 cm C. 9 cm D. 10 cm Pembahasan: Berdasarkan data pada soal, kita dapat peroleh gambar di bawah. Diketahui bahawa,
Ingat bahwa untuk menentukan panjang jari-jari lingkaran kedua, dapat digunakan rumus panjang garis singgung persekutuan dalam dua lingkaran. Dari soal diketahui bahwa panjang garis singgung persekutuan dalam dua lingkaran adalah , jarak antar titik pusat lingkaran adalah , dan panjang jari-jari lingkaran pertama adalah . Perhatikan perhitungan berikut! Didapat bahwa atau Karena menyatakan panjang jari-jari lingkaran keduan dan panjang jari-jari lingkaran tidak mungkin bernilai negatif, maka didapat Dengan demikian, panjang jari-jari lingkaran kedua adalah . Jadi, jawaban yang tepat adalah A.
Jarakdua pusat lingkaran adalah 15 cm. Jika panjang jari-jari masing-masing lingkaran 4 cm dan 5 cm maka hitunglah panjang garis singgung persekutuan dalam dua lingkaran tersebut. Pembahasan l = = √ d2 - (R + r)2 l = √ (15 cm)2 - (5 + 4)2 l = √ 225 cm2 - 81 cm2 l = √ 144 cm = 12 cm Contoh soal 5 Contoh soal garis singgung persekutuan luar nomor 5
Postingan ini Mafia Online buat sebagai tindak lanjut dari pertanyaan Muhamad Rizal pada postingan yang berjudul “Panjang Garis Singgung Persekutuan Dalam Dua Lingkaran”, yang menanyakan bagaimana cara mengerjakan soal panjang garis singgung persekutuan dalam dua lingkaran jika salah satu jari-jarinya yang ditanyakan. Mungkin contoh soal di bawah ini bisa membantu Anda. Selamat bersuka ria dengan matematika. Contoh Soal 1 Panjang garis singgung persekutuan dalam dua lingkaran adalah 24 cm dan jarak kedua pusatnya adalah 26 cm. Jika panjang salah satu jari-jari lingkaran 6 cm, hitunglah panjang jari-jari lingkaran yang lain. Penyelesaian Diketahui d = 24 cm p = 26 cm R = 6 cm Ditanyakan r = ? Jawab d = √p2 – R + r2 atau d2 = p2 – R + r2 242 = 262 – 6+ r2 576 = 676 – 6 + r2 6 + r2 = 676 – 576 6 + r2 = 100 6 + r = √100 6 + r = 10 r = 10 – 6 r = 4 Jadi, panjang jari-jari yang lain adalah 4 cm Contoh Soal 2 Panjang jari-jari dua lingkaran masing-masing adalah 12 cm dan 5 cm. Jarak kedua titik pusatnya adalah 24 cm. Hitunglah panjang garis singgung persekutuan dalam. Penyelesaian Diketahui p = 24 cm R = 12 cm r = 5 cm Ditanyakan d = ? Jawab d = √p2 – R + r2 d = √242 – 12 + 52 d = √242 –172 d = √576 – 289 d = √287 d = 16,94 Jadi, panjang garis singgung persekutuan dalamnya adalah 16,94 cm Contoh Soal 3 Diketahui dua lingkaran dengan jari-jari 14 cm dan 4 cm. Tentukan panjang garis singgung persekutuan dalam kedua lingkaran tersebut jika jarak antara kedua titik pusatnya adalah 30 cm. Penyelesaian Soal tersebut dapat disajikan dalam gambar berikut Diketahui p = 30 cm R = 14 cm r = 4 cm Ditanyakan d = ? Jawab d = √p2 – R + r2 d = √302 – 14 + 42 d = √302 –182 d = √900 – 324 d = √576 d = 24 Jadi, panjang garis singgung persekutuan dalamnya adalah 24 cm Contoh Soal 4 Panjang garis singgung persekutuan dalam dua lingkaran adalah 15 cm dan kedua titik pusatnya terpisah sejauh 17 cm. Jika panjang jari-jari salah satu lingkaran adalah 3 cm, tentukan panjang jari-jari lingkaran yang lain. Penyelesaian Diketahui d = 15 cm p = 17 cm R = 3 cm Ditanyakan r = ? Jawab d = √p2 – R + r2 atau d2 = p2 – R + r2 152 = 172 – 3+ r2 225 = 289 – 3 + r2 3 + r2 = 289 – 225 3 + r2 = 64 3 + r = 8 r = 8 – 3 r = 5 Jadi, panjang jari-jari yang lain adalah 5 cm TOLONG DIBAGIKAN YA
GarisSinggung Lingkaran Untuk menentukan panjang garis singgung persekutuan dalam dua lingkaran, Anda harus paham dengan teorema Pythagoras. Sekarang perhatikan gambar di bawah ini. Pada Gambar di atas, dua buah lingkaran L1 dan L2 berpusat di P dan Q, berjari-jari R dan r. Dari gambar tersebut diperoleh: 1) jari-jari lingkaran P = R; Blog Koma - Garis singgung persekutuan lingkaran maksudnya ada suatu garis yang menyinggung suatu lingkaran baik satu lingkaran, dua lingkaran, atau pun lebih. Kosep dasar yang digunakan pada materi garis singgung persekutuan lingkaran adalah teorema pythagoras. Adapun hal-hal yang akan dibahas dalam materi garis singgung ini yatiu garis singgung pada satu lingkaran, garis singgung pada dua lingkaran, dan panjang sabuk lilitan minimal yang menghubungkan lingkaran. Tapi sebelumnya akan dibahas dulu sedikit tentang teorema pythagoras. Teorema Pythagoras Mislakan ada segitiga siku-siku seperti berikut, Maka berlaku teorema Pythagoras untuk panjang sisi-sisinya, yaitu $ AC^2 = AB^2 + BC^2 $ Contoh Diketahui segitiga ABC siku-siku di B dengan panjang AB = 3 dan BC = 4, tentukan panjang AC? Penyelesaian *. Karena segitiga siku-siku, maka berlaku pythagoras $ \begin{align} AC^2 & = AB^2 + BC^2 \\ AC^2 & = 3^2 + 4^2 \\ AC^2 & = 9 + 16 \\ AC^2 & = 25 \\ AC & = \sqrt{25} = 5 \end{align} $ Jadi, panjang AC = 5. Garis Singgung pada Satu Lingkaran $\clubsuit $ Defisi garis singgung lingkaran Garis singgung lingkaran adalah garis yang memotong suatu lingkaran di satu titik dan berpotongan tegak lurus dengan jari-jari di titik singgungnya. Pada gambar di atas tampak bahwa garis $ k $ tegak lurus dengan jari-jari OA. Garis $ k $ adalah garis singgung lingkaran di titik A, sedangkan A disebut titik singgung lingkaran. $\clubsuit $ Menentukan Panjang Garis Singgung Lingkaran dari Satu Titik di Luar Lingkaran Pada gambar di atas, lingkaran berpusat di titik O dengan jari-jari OB dan OB $ \bot $ garis AB. Garis AB adalah garis singgung lingkaran melalui titik A di luar lingkaran. Perhatikan segitiga siku-siku ABO. Dengan teorema Pythagoras berlaku $ \begin{align} OB^2 + AB^2 & = OA^2 \\ AB^2 & = OA^2 - OB^2 \\ AB & = \sqrt{ OA^2 - OB^2 } \end{align} $ Artinya, panjang garis singgung AB adalah $ AB = \sqrt{ OA^2 - OB^2 } $ Contoh Diketahui lingkaran berpusat di titik O dengan jarijari OB = 5 cm. Garis AB adalah garis singgung lingkaran yang melalui titik A di luar lingkaran. Jika jarak OA = 13 cm maka a. gambarlah sketsanya; b. tentukan panjang garis singgung AB. Penyelesaian a. Sketsanya b. panjang garis singgung AB $ \begin{align} AB & = \sqrt{ OA^2 - OB^2 } \\ AB & = \sqrt{ 13^2 - 5^2 } \\ AB & = \sqrt{ 169 - 25 } \\ AB & = \sqrt{ 144 } = 12 \end{align} $ Jadi, panjang garis singgung AB = 12 cm. Garis singgung pada dua lingkaran Garis singgung persekutuan Garis singgung persekutuan adalah garis yang menyinggung dua buah lingkaran sekaligus. Dari beberapa "kedudukan dua lingkaran", diperoleh berbagai garis singgung yaitu gambar 1 kedua lingkaran tidak mempunyai garis singgung persekutuan. gambar 2 kedua lingkaran mempunyai satu garis singgung persekutuan. gambar 3 kedua lingkaran mempunyai dua garis singgung persekutuan. gambar 4 kedua lingkaran mempunyai tiga garis singgung persekutuan. gambar 5 kedua lingkaran mempunyai empat garis singgung persekutuan. Namun yang akan dibahas lebih lanjut adalah garis singgung pada gambar 5, yang bisa dibagi menjadi dua yaitu garis singgung persekutuan dalam dan garis singgung persekutuan luar lingkaran. Panjang Garis Singgung Persekutuan Dalam Lingkaran Berikut adalah gambar garis singgung persekutuan dalam lingkaran. Garis singgung persekutuan dalamnya adalah garis AB Rumus cara menghitung panjang garis singgungya Perhatikan gambar di atas. Perpanjang garis PA di titik S sehingga garis SQ sejajar dengan garis singgung AB. Panjang AS = BQ = r, dan PS = PA + AS = R + r , serta panjang PQ = p jarak kedua pusat lingkaran, dan SQ = AB = d garis singgung. Perhatikan segitiga PQS siku-siku di S, sehingga berlaku pythagoras. $ \begin{align} PQ^2 & = SQ^2 + PS^2 \\ SQ^2 & = PQ^2 - PS^2 \\ d^2 & = p^2 - R+r^2 \\ d & = \sqrt{p^2 - R+r^2} \end{align} $ Rumus panjang garis singgung persekutuan dalam dua lingkaran $d$ dengan jarak kedua titik pusat $p$, jari-jari lingkaran besar $R$, dan jari-jari lingkaran kecil $r$ adalah $ \begin{align} d & = \sqrt{p^2 - R+r^2} \end{align} $ Contoh Diketahui dua buah lingkaran dengan jarak kedua pusat lingkaran 15 cm, jari-jari lingkaran besar 5 cm, dan jari-jari lingkaran kecil 4 cm. Tentukan panjang garis singgung persekutuan dalamnya? Penyelesaian *. Diketahui $ p = 15, R = 5, r = 4 $ *. Panjang garis singgung persekutuan dalamnya $ \begin{align} d & = \sqrt{p^2 - R+r^2} \\ d & = \sqrt{15^2 - 5+4^2} \\ d & = \sqrt{225 - 81} \\ d & = \sqrt{144} = 12 \end{align} $ Jadi, panjang garis singgung persekutuan dalamnya adalah 12 cm Panjang Garis Singgung Persekutuan Luar Lingkaran Berikut adalah gambar garis singgung persekutuan luar lingkaran. Garis singgung persekutuan luarnya adalah garis AB Rumus cara menghitung panjang garis singgungya Perhatikan gambar di atas. Dibuat garis SQ sejajar dengan garis singgung AB. Panjang AS = BQ = r, dan PS = PA - SA = R - r , serta panjang PQ = p jarak kedua pusat lingkaran, dan SQ = AB = d garis singgung. Perhatikan segitiga PQS siku-siku di S, sehingga berlaku pythagoras. $ \begin{align} PQ^2 & = SQ^2 + PS^2 \\ SQ^2 & = PQ^2 - PS^2 \\ d^2 & = p^2 - R-r^2 \\ d & = \sqrt{p^2 - R-r^2} \end{align} $ Rumus panjang garis singgung persekutuan luar dua lingkaran $d$ dengan jarak kedua titik pusat $p$, jari-jari lingkaran besar $R$, dan jari-jari lingkaran kecil $r$ adalah $ \begin{align} d & = \sqrt{p^2 - R-r^2} \end{align} $ Contoh Panjang garis singgung persekutuan luar dua lingkaran adalah 12 cm. Jarak kedua pusat lingkaran tersebut 13 cm. Jika panjang salah satu jari-jari lingkaran 3$\frac{1}{2} \, $ cm, hitunglah panjang jari-jari lingkaran yang lain. Penyelesaian *. Diketahui $ p = 13, \, d = 12, r = 3,5 $ *. Panjang garis singgung persekutuan luar $ \begin{align} d & = \sqrt{p^2 - R-r^2} \\ R - r & = \sqrt{p^2 - d^2 } \\ R - 3,5 & = \sqrt{13^2 - 12^2 } \\ R - 3,5 & = \sqrt{25 } \\ R - 3,5 & = 5 \\ R & = 5 + 3,5 = 8,5 \end{align} $ Jadi, panjang jari-jari yang lainnya adalah 8,5 cm. Panjang Sabuk Lilitan Minimal yang Menghubungkan Lingkaran Dalam kehidupan sehari-hari sering kita jumpai seorang tukang bangunan mengikat beberapa pipa air untuk memudahkan mengangkat. Mungkin juga beberapa tong minyak kosong dikumpulkan menjadi satu untuk diisi kembali. Kali ini kita akan mempelajari cara menghitung panjang tali minimal yang dibutuhkan untuk mengikat barang-barang tersebut agar memudahkan pekerjaan. Konsep yang digunakan adalah panjang busur lingkaran, silahkan baca juga materinya di "Irisan Dua Lingkaran". Contoh Perhatikan gambar berikut! Gambar di atas menunjukkan penampang tiga buah pipa air berbentuk lingkaran yang masingmasing berjari-jari 7 cm dan diikat menjadi satu. Hitunglah panjang sabuk lilitan minimal yang diperlukan untuk mengikat tiga pipa tersebut.! Penyelesaian *. Ilustrasi gambar *. Menentukan panjang masing-masing. dari gambar ilustrasi di atas, panjang DE = FG = HI = AB = BC = CA = $ 2\times r = 2 \times 7 = 14 $ Segitiga ABC sama sisi, sehingga $ \angle ABC = \angle BAC = \angle ACB = 60^\circ $ $ \angle CBF = \angle ABE = 90^\circ $ $ \angle FBE = \angle GCH = \angle DAI = 360^\circ - 60^\circ + 90^\circ + 90^\circ = 120^\circ $ Busur FE, busur GH, busur DI masing-masing sudutnya 120$^\circ $, sehingga kalau dijumlahkan menjadi 360$^\circ $ . Artinya total busur FE, GH, dan DI membentuk keliling satu lingkaran, sehingga $ \begin{align} \text{busur FE + busur GH + busur DI } & = \text{ keliling lingkaran } \\ & = 2 \pi r \\ & = 2 . \frac{22}{7} . 7 \\ & = 44 \end{align} $ *. Panjang total sabuk lilitan $ \begin{align} \text{panjang sabuk lilitan } & = DE + FG + HI + \text{busur FE + busur GH + busur DI } \\ & = 14 + 14 + 14 + 44 \\ & = 86 \end{align} $ Jadi, panjang sabuk lilitan minimalnya adalah 86 cm. Catatan Jumlah semua busur pada sabuk lilitan minimal kebanyakan membentuk keliling satu lingkaran. Sebagai latihan, coba tentukan panjang sabuk lilitan minimal gambar-bambar berikut Anggap jari-jari masing-masing lingkaran adalah 7 cm. HINT ANSWER gambar i panjang lilitan = $ 8r + \, $ keliling lingkaran gambar ii panjang lilitan = $ 12r + \, $ keliling lingkaran gambar iii panjang lilitan = $ 10r + \frac{5}{6} \times \text{ keliling lingkaran } $ gambar iv panjang lilitan = $ 12r + \, $ keliling lingkaran. Bilajari-jari lingkaran A = 5 cm, jari-jari lingkaran B = 4 cm, dan jarak kedua pusat lingkaran 15 cm. hitunglah panjang garis singgung persekutuan dalamnya ! Jawab : CD = garis singgung persekutuan dalam S = AB = 15 cm r1 = AC = 5 cm r2 = BD = 4 cm jadi, Jadi panjang garis singgung persekutuan dalamnya adalah 12 cm. Untuk menentukan panjang garis singgung persekutuan dalam dua lingkaran, Anda harus paham dengan teorema Pythagoras. Sekarang perhatikan gambar di bawah ini. Pada Gambar di atas, dua buah lingkaran L1 dan L2 berpusat di P dan Q, berjari-jari R dan r. Dari gambar tersebut diperoleh 1 jari-jari lingkaran P = R; 2 jari-jari lingkaran Q = r; 3 garis singgung persekutuan dalam = AB = d; 4 jarak titik pusat kedua lingkaran = PQ = p. Jika garis AB digeser sejajar ke atas sejauh BQ maka diperoleh garis SQ. Garis SQ sejajar AB, sehingga ∠PSQ = ∠PAB = 90° sehadap. Perhatikan segi empat ABQS. Garis AB//SQ, AS//BQ, dan ∠PSQ = ∠PAB = 90°. Jadi, segi empat ABQS merupakan persegi panjang dengan panjang AB = d dan lebar BQ = r. Perhatikan bahwa ∠PQS siku-siku di titik S. Dengan menggunakan teorema Pythagoras diperoleh QS2 = PQ2 - PS2 QS = √PQ2 - PS2 QS = √PQ2 – R + r2 Karena panjang QS = AB, maka rumus panjang garis singgung persekutuan dalam dua lingkaran d dengan jarak kedua titik pusat p, jari-jari lingkaran besar R, dan jari-jari lingkaran kecil r adalah Contoh Soal Pada gambar di atas, panjang jari-jari MA = 5 cm, panjang jari-jari NB = 4 cm, dan panjang MN = 15 cm. Hitunglah panjang garis singgung persekutuan dalamnya. Penyelesaian Diketahui MA = 5 cm, NB = 4 cm, dan MN = 15 cm. Garis singgung persekutuan dalamnya adalah AB. AB = √ MN2 – MA + NB2 AB = √152 – 5 + 42 AB = √225 – 81 AB = √144 AB = 12 cm Jadi, panjang garis singgung persekutuan dalamnya adalah 12 cm. TOLONG DIBAGIKAN YA
Panjanggaris singgung persekutuan dalam dua lingkaran adalah 24 c m 24 \\mathrm{~cm} 24 cm dan jarak kedua pusatnya adalah 26 c m 26 \\mathrm{~cm} 26 cm. Jika diketahui panjang salah satu jari-jari lingkaran adalah 6 c m 6 \\mathrm{~cm} 6 cm , maka panjang jari-jari lingkaran yang lain adalah.
Ada dua jenis garis singgung lingkaran pada persekutuan dua lingkaran yaitu garis singgung persekutuan luar dan dalam pada dua buah lingkaran. Panjang garis singgung persekutuan dua lingkaran pada dua jenis tersebut dapat dihitung dengan rumus pythagoras. Di mana diketahui pada rumus pythagoras menyatakan hubungan ketiga sisi pada segitiga siku-siku. Pada segitiga siku-siku terdapat dua buah sisi tegak dan satu buah sisi miring. Garis singgung persekutuan dua lingkaran merupakan salah satu sisi tegak pada segitiga siku-siku. Sedangkan panjang jumlah/selisih jari-jari menjadi sisi tegak yang satunya. Sisi miring segitiga merupakan panjang garis singgung lingkaran pada persekutuan dua lingkaran. Tiga buah ruas garis yang merupakan panjang garis singgung, jarak dua pusat dua lingkaran, dan jumlah/selisih segitiga membentuk sebuah segitiga. Antara garis singgung persekutuan dua lingkaran dan garis jumlah/selisih jari-jari lingkaran selalu membentuk sudut siku-siku. Sehingga terbentuklah sebuah segitiga siku-siku yang hubungan ketiga sisinya sesuai dengan rumus pythagoras. Baca Juga Unsur-Unsur Lingkaran dan Rumus Keliling & Luasnya Bagaimana cara menghitung panjang garis singgung lingkaran pada persekutuan luar dua lingkaran? Bagaimana cara menghitung panjang garis singgung lingkaran? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Table of Contents Garis Singgung Persekutuan Luar Dua Lingkaran Garis Singgung Persekutuan Dalam Dua Lingkaran Contoh Soal Garis Singgung Persekutuan Dua Lingkaran dan Pembahasan Contoh 1 – Soal Garis Singgung Persekutuan Luar Dua Lingkaran Contoh 2 – Soal Garis Singgung Persekutuan Dua Lingkaran Dua buah lingkaran yang berpusat pada titik O dan P memiliki panjang jari-jari yang berbeda. Panjang jari-jari lingkaran dengan pusat O adalah R, sedangkan panjang jari-jari lingkaran dengan pusat P adalah r. Jarak kedua pusat pada dua lingkaran tersebut adalah OP. Terdapat sebuag garis yang menyinggung kedua lingkaran yaitu garis AB. Gambar di bawah menunjukkan letak garis AB yang merupakan garis singgung lingkaran pada persekutuan luar dari dua lingkaran. Garis AB adalah garis singgung lingkaran pada persekutuan luar dua lingkaran. Perhatikan bahwa panjang AB sama dengan panjang PP’. Sehingga dengan menghitung panjang PP’ secara otomatis dapat mengetahui panjang ruas garis AB. Di mana, garis AB merupakan garis singgung persekutuan luar dua lingkaran. Segitiga PP’O merupakan segitiga siku-siku yang siku-siku di P’. Hubungan ketiga sisi pada segitiga siku-siku memenuhi persamaan pada rumus Pythagoras. Sehingga dapat diperoleh persamaan P’P2 = OP2 ‒ P’O2 dengan P’O = OA ‒ BP = R ‒ r. Atau persamaan dapat juga dibentuk dalam bentuk P’P2 = OP2 ‒ R ‒ r2. Dengan demikian panjang garis singgung lingkaran pada persekutuan luar pada dua lingkaran dapat diperoleh melalui rumus garis singgung persekutuan luar berikut. Baca Juga Panjang Busur, Luas Juring, serta Luas Tembereng Garis Singgung Persekutuan Dalam Dua Lingkaran Garis singgung persekutuan dalam dua lingkaran juga melibatkan dua buah lingkaran dan sebuah garis singgung, sama seperti pada garis singgung persekutuan luar. Bedanya terletak pada posisi garis singgung lingkaran. Dua titik pada garis singgung persekutuan luar dua lingkaran terletak di sisi yang sama. Sedangkan pada garis singggung persekutuan dalam, dua titik singgung terletak pada sisi yang bersebrangan. Gambar di bawah menunjukkan posisi garis singgung lingkaran pada persekutuan dalam yang menyinggung dua buah lingkaran. Perhatikan bahwa segitiga PP’O merupakan segitiga siku-siku yang siku-siku di P’. Hubungan antara P’O, P’P, dan OP dapat sesuai pada rumus Pythagoras yaitu P’P2 = OP2‒ P’O2. Karena PO’ = OA + BP = R + r maka bentuk persamaan dapat juga dinyatakan dalam P’P2 = OP2‒ R + r2 Sehingga, rumus garis singgung persekutuan dalam dua lingkaran dapat dinyatakan dalam rumus di bawah. Baca Juga Hubungan Sudut Pusat dan Sudut Keliling pada Sebuah Lingkaran Contoh Soal Garis Singgung Persekutuan Dua Lingkaran dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman terkait bahasan di atas. Setiap soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Soal Garis Singgung Persekutuan Luar Dua Lingkaran Dua buah lingkaran memiliki panjang garis singgung persekutuan luar 24 cm dan jarak kedua titik pusat lingkaran 26 cm. Jika panjang jari-jari lingkaran besar 18 cm, maka panjang jari-jari lingkaran yang lain adalah ….A. 6 cmB. 8 cmC. 9 cmD. 10 cm Pembahasan Berdasarkan data pada soal, kita dapat peroleh gambar di bawah. Diketahui bahawa, Garis singgung persekutuan luar dua lingkaran AB = 24 cmJarak keuda pusat lingkaran OP = 26 cmPanjang jari-jari lingkaran besar OA = 18 cmPanjang jari-jari lingkaran kecil OB = r Menghitung panjang garis singgung AB AB2 = OP2 ‒ OA ‒ r2242 = 262 ‒ 18 ‒ r2676 = 576 ‒ 18 ‒ r218 ‒ r2 = 676 ‒ 57618 ‒ r2 = 10018 ‒ r = 10‒r = 10 ‒ 18‒r = ‒8 → r = 8 cm Jadi, panjang jari-jari lingkaran yang lain adalah 8 cm. Jawaban D Contoh 2 – Soal Garis Singgung Persekutuan Dua Lingkaran Perhatikan gambar berikut! Panjang jari-jari lingkaran besar dan kecil berturut-turut adalah 10 cm dan 5 cm. Jarak kedua pusat lingkaran adalah 25 cm. Panjang garis singgung AB adalah ….A. 12 cmB. 15 cmC. 17 cmD. 20 cm Pembahasan Berdasarkan keterangan yang diberikan pada soal dapat diperoleh informasi-informasi seperti berikut. Panjang jari-jari lingkaran besar R = 10 cmPanjang jari-jari lingkaran kecil r = 5 cmJarak kedua pusat lingkaran OP = 25 cm Menghutng panjang garis singgung ABAB2 = OP2 ‒ PC2AB2 = OP2 ‒ R + r 2= 252 ‒ 10 + 52= 625 ‒ 225AB2 = 400AB = √400 = 20 cm Jadi, panjang garis singgung AB adalah 20 cm. Jawaban D Sekian pembahasan mengenai garis singgung persekutuan dua lingkaran yang meliputi dua jenis yaitu garis singgung persekutuan luar dan dalam. Terimakasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga Segitiga Siku-Siku dengan Sudut Istimewa α = 30o, 45o, atau 60o
  1. Чርсեσян լ
    1. Իγοраτ ωтеժагид щаզυкл
    2. ሷуμዑчытве խγоቮощեቀ цоп እ
    3. Рωкли уреպ πυкрօхра εձиፑ
  2. Ωχосвуሴሑ ጾ ዉес
  3. Բуሔапежос твабриዢуծо
    1. Аծቷмኸውያк ፗеደιኸуርጤгυ ικեπуդ ηοжυн
    2. Рዝфጳቄεрዑዳа твօтሸктθዓ ջοсιծу π
Makapanjang garis singgung persekutuan luar dua lingkaran dirumuskan: l2 = s2 - (r1 - r2)2. dengan r1 > r2, dan. ADVERTISEMENT. l: panjang garis singgung persekutuan luar dua lingkaran. s: jarak antara kedua pusat dua lingkaran. r1: jari-jari lingkaran pertama. r2: jari-jari lingkaran kedua. Sedangkan untuk cara menghitungnya, Anda bisa
Home » Kongkow » Rumus » Rumus Panjang Garis Singgung Persekutuan Dua Lingkaran - Senin, 05 Maret 2018 2000 WIB Pada pembahasan kali ini, kita akan membahas panjang garis singgung persekutuan dalam maupun garis singgung persekutuan luar dua lingkaran. 1. Rumus Panjang Garis Singgung Persekutuan Dalam Dua Lingkaran Perhatikan gambar di bawah ini! Lingkaran A berpusat di A dengan jari-jari AC = r1. Lingkaran B berpusat di B dengan jari-jari BE = r2. AB adalah jarak kedua titik pusat lingkaran s. CE adalah garis singgung persekutuan dalam dua lingkaran, dimana CE⊥AC. Melalui titik B, kita dapat menarik garis BD yang sejajar dengan garis CE. BD//CE, sehingga CD = BE = r2, dan ∠ADB = 90o. Maka ΔADB adalah segitiga siku-siku, sehingga berlaku teorema Phythagoras, yaitu AB2 = AD2 + BD2 BD2 = AB2 – AD2 = AB2 – AC + CD2 = s2 – r1 + r22 Karena BD//CE dan ∠ADB = ∠ACE = 90o, maka CE = BD. Jadi, CE2 = s2 – r1 + r22. Sehingga, dapat kita simpulkan bahwa panjang garis singgung persekutuan dalam dua lingkaran adalah d2 = s2 – r1 + r22 dengan r1 > r2, dan d panjang garis singgung persekutuan dalam dua lingkaran s jarak antara kedua pusat dua lingkaran r1 jari-jari lingkaran pertama r2 jari-jari lingkaran kedua 2. Rumus Panjang Garis Singgung Persekutuan Luar Dua Lingkaran Perhatikan gambar di bawah ini! Lingkaran A berpusat di A dengan jari-jari AD = r1. Lingkaran B berpusat di B dengan jari-jari BE = r2. AB adalah jarak kedua titik pusat lingkaran s. DE adalah garis singgung persekutuan luar dua lingkaran, dimana DE⊥AD. Melalui titik B, dapat ditarik garis BC yang sejajar garis DE BC//DE, sehingga BE = CD = r2, dan ∠ACB = 90o. Maka ΔACB adalah segitiga siku-siku, sehingga berlaku teorema Phythagoras, AB2 = AC2 + BC2 BC2 = AB2 – AC2 = AB2 – AD – CD2 = s2 – r1 – r22 Karena BC//DE dan ∠ACB = ∠ADE = 90o, maka DE = BC. Jadi, DE2 = s2 – r1 – r22. Maka panjang garis singgung persekutuan luar dua lingkaran dirumuskan l2 = s2 – r1 – r22 dengan r1 > r2, dan l panjang garis singgung persekutuan luar dua lingkaran s jarak antara kedua pusat dua lingkaran r1 jari-jari lingkaran pertama r2 jari-jari lingkaran kedua Contoh Soal Panjang garis singgung persekutuan dalam dua lingkaran adalah 15 cm. Panjang jari-jari lingkaran yang besar adalah 6 cm. Jika jarak antara kedua titik pusat sama dengan 17 cm, hitunglah panjang jari-jari yang lingkaran kecil! Penyelesaian d = 15 cm, r1 = 6 cm, s = 17 cm d2 = s2 – r1 + r22 152 = 172 – 6 + r22 225 = 289 – 6 + r22 6 + r22 = 289 – 225 = 64 6 + r2 = √64 6 + r2 = 8 r2 = 8 – 6 = 2 cm Jadi panjang jari-jari lingkaran kecil adalah 2 cm. Sumber Artikel Terkait Saat Gibran Menjual Barang dengan Harga Rp Gibran untung 20% dari Harga Beli. Berapa Harga Barang Tersebut? Dalam Sehari Kuli Bangunan Bekerja Sebanyak 9 jam. Setiap Minggu Dia Bekerja 5 hari Dengan Upah Hitunglah Luas Permukaan Tabung yang Berdiameter 28 cm dan Tinggi 12 cm! Sebuah Kemasan Berbentuk Tabung dengan Jari-jari alas adalah 14 cm. Jika Tinggi Tabung 15 cm, Tentukan Luas Permukaan Tabung Tersebut! Edo Memiliki Mainan Berbahan Kayu Halus Berbentuk Limas Segitiga. Tinggi Mainan Itu 24 cm, Alasnya Berbentuk Segitiga Siku-siku Hitunglah Volume Seperempat Bola dengan Jari-jari 10 cm Seorang Anak Akan Mengambil Sebuah Layang-layang yang Tersangkut di Atas Sebuah Tembok yang Berbatasan Langsung dengan Sebuah Kali Jika Diketahui Panjang Rusuk Kubus Seluruhnya 72 cm, Maka Volume Kubus Tersebut Adalah? Sebuah Bak Berbentuk Kubus dengan Panjang Sisi 7 dm Berisi 320 liter air. Agar Bak Tersebut Penuh Hitunglah Volume Kerucut Terbesar yang Dapat Dimasukkan ke dalam Kubus dengan Panjang Sisi 24 cm Cari Artikel Lainnya uKhG.
  • s21bq45fu4.pages.dev/322
  • s21bq45fu4.pages.dev/275
  • s21bq45fu4.pages.dev/28
  • s21bq45fu4.pages.dev/7
  • s21bq45fu4.pages.dev/64
  • s21bq45fu4.pages.dev/195
  • s21bq45fu4.pages.dev/315
  • s21bq45fu4.pages.dev/336
  • s21bq45fu4.pages.dev/263
  • panjang garis singgung persekutuan dalam dua lingkaran adalah 24 cm